(三)了解网站与网页HTML的基本知识:网站与网页的概念、Web 服务器与浏览器,网页内容,动态网页和静态网页,常用网页制作工具,网页设计的相关计算机语言,HTML语言的基本概念、常用HTML标记的意义和语法。
(四)了解使用Dreamweaver 创建管理站点及编辑网页的基本操作:站点创建与管理,网页中文字编辑及格式化、图像的插入与编辑、媒体对象的插入及超链接的创建。掌握在Dreamweaver中网页布局的方法,了解表单页面的创建及网页的发布。
九、多媒体技术基础知识
(一)了解多媒体的基础知识:多媒体技术的概念、特点,多媒体技术中的媒体元素,多媒体计算机系统的组成。
(二)掌握常用多媒体软件的简单使用:音频处理技术、图像处理技术和视频处理技术,掌握虚拟现实和流媒体的概念,了解虚拟现实、流媒体和多媒体技术的应用领域。了解常用多媒体软件的使用:音频 处理技术、图像处理技术和视频处理技术。
(三)掌握流媒体的概念;了解流媒体技术的应用领域及其发展趋势。
十、信息安全
(一)了解网络信息安全的基本知识:信息安全的基本知识,网络礼仪与道德,计算机犯罪、计算机病毒、黑客,常用的信息安全技术,防火墙的概念、类型、体系结构,Windows 7 操作系统安全、无线局域网安全、电子商务和电子政务安全,信息安全政策与法规。
(二)了解常用的信息安全技术;掌握密码技术、防火墙技术、反病 毒技术等信息安全技术的概念。
(三)了解信息安全技术在电子商务和电子政务中的应用。
十一、新一代信息技术
(一)掌握云计算、大数据、物联网、人工智能、区块链等新一代信 息技术的基本概念;了解其技术原理。
(二)了解新一代信息技术在数字经济、智能制造、智慧城市等领域 17 中的应用、对社会产生的影响及其发展趋势。
(三)了解新一代信息技术之间的关系。
Ⅱ.考试形式与题型
一、考试形式
考试采用闭卷、笔试形式。试卷满分100分,考试时间120分钟。
二、题型
考试题型从以下类型中选择:单项选择题、多项选择题、判断题、填空题、简答题、分析题、操作题、综合运用题。
山东省2020年普通高等教育专科升本科招生考试
大学语文(公共课)考试要求
Ⅰ.考试内容与要求
本科目考试内容包括语言基础知识、文学文化常识、作品阅读分析和写作等四个方面,主要考查考生识记、理解、分析综合、鉴赏评价、表达应用和探究等能力。具体内容与要求如下:
一、语言基础知识
(一)了解文言文以单音词为主的特点一词多义现象,能够识记、理解常用的文言实词古今意义的不同,能够识别文言文中常用的通假字和古今字并理解其含义;
(二)辩识“之、其、于、以、而、则、乃、者、所、焉、且”等常见的文言虚词在不同语言环境中的不同含义及作用;
(三)理解文言文中与现代汉语不同的语法现象和句式,掌握使动用法、意动用法、名词作状语、名词作动词等词类活用现象,掌握判断句、被动句、宾语前置句等特殊句式的用法,能够准确翻译文言文;
(四)掌握文言文、现代文中常见的修辞手法,如比喻、比拟、对偶、排比、夸张、象征、设问、反诘、层递等,并能具体说明其表达作用。
二、文学文化常识
(一)识记并掌握古今中外重要作家、代表作品的基本知识,如作者的姓名、字号、生活年代、代表作与作品集名称、文学主张、文学成就及其他重要贡献,代表作品的出处、编著年代、基本内容、主要特色及文学史地位等;
(二)识记古诗文经典名句;
(三)掌握古今各类文体知识;
(四)掌握文学史上重要文学流派和文学现象;
(五)掌握传统文化基本知识。
三、作品阅读分析
包括古诗词文和现代文文本阅读分析。
(一)了解作者生平及作品反映的时代背景与社会生活;
(二)领会并能够准确分析作品的体裁特征、主要表现手法、写作特色;
(三)赏析作品中的文学形象,品味作品的语言特色;
(四)把握并归纳作品的主旨,理解作品的思想意义。
四、写作
(一)应用写作
基本要求:能根据提供的材料或情境,选择恰当的文种写作能力,主题鲜明集中,材料准确翔实,结构完整恰当,表达通顺合理主要文种包括公务文书中的通知、通报、报告、请示、函和事务文书中的声明、启事、证明、介绍信、求职信、演讲稿(含欢迎词、欢送词、答谢词等)、商函、计划(策划书)、总结、调查报告等。请柬、借条、收条、请假条、新闻稿等。基本要求:主题明确,信息全面,结构完整,格式规范,表达得体。
(二)文学写作
主要考核议论文、记叙文的写作能力。
基本要求:立意积极向上,符合文体特征,内容充实,中心明确,条理清楚,结构完整,文字通顺,标点恰当,书写工整,格式规范。字数不少于800字。
Ⅱ.考试形式与题型
一、考试形式
考试采用闭卷、笔试形式。试卷满分100分,考试时间120分钟。
二、题型
考试题型从以下类型中选择:单项选择题、多项选择题、填空题、名句默写题、判断题、词语解释题、文言文翻译题、阅读分析题(文言文阅读分析、古诗词阅读分析、现代文阅读分析)、写作题(应用写作、文学写作)。
Ⅲ.文言文参考篇目
1.《季氏将伐颛臾》 《论语》
2.《庖丁解牛》《庄子》
3.《秋水》(节选) 《庄子》
4.《郑伯克段于鄢》 《左传》
5.《子产不毁乡校》 《左传》
6.《冯谖客孟尝君》 《战国策》
7.《赵威后问齐使》 《战国策》
8.《苏秦始将连横说秦》 《战国策》
9.《察传》《吕氏春秋》
10. 《谏逐客书》秦·李斯
11.《答客难》西汉·东方朔
12.《孔子世家》《史记》
13.《管晏列传》《史记》
14.《垓下之围》《史记》
15.《诫兄子严、敦书》 东汉·马援
16.《遗黄琼书》东汉·李固
17.《登楼赋》三国魏·王粲
18.《石崇与王恺争豪》 《世说新语》
19.《神思》《文心雕龙》
20.《张中丞传后叙》 唐·韩愈
21.《种树郭橐驼传》唐·柳宗元
22.《蝜蝂传》唐·柳宗元
23.《朋党论》宋·欧阳修
24.《伶官传序》宋·欧阳修
25.《赵武灵王胡服骑射》 《资治通鉴》
26.《戊午上高宗封事》 宋·胡铨
27.《先妣事略》明·归有光
28.《报刘一丈书》 明·宗臣
29.《西湖七月半》 明·张岱
30.《传是楼记》清·汪琬
31.《鞌之战》《左传》
32.《召公谏厉王弭谤》《国语》
33.《句践灭吴》《国语》
34.《子路曾皙冉有公西华侍坐》 《论语》
35.《逍遥游》《庄子》
36.《齐桓晋文之事》《孟子》
37.《劝学》《荀子》
38.《鸿门宴》《史记》
39.《孙子吴起列传》《史记》
40.《巫山巫峡》《水经注》
41.《钴鉧潭西小丘记》唐·柳宗元
42.《岳阳楼记》宋·范仲淹
43.《秋声赋》宋·欧阳修
44.《前赤壁赋》宋·苏轼
45.《送东阳马生序》明·宋濂
山东省2020年普通高等教育专科升本科招生考试
高等数学Ⅰ考试要求
Ⅰ.考试内容与要求
本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。主要考查学生识记、理解和应用能力,为进一步学习奠定基础。具体内容与要求如下:
一、函数、极限与连续
(一)函数
1.理解函数的概念,会求函数的定义域、表达式及函数值,会建立应用问题的函数关系。
2.理解和掌握函数的有界性、单调性、周期性和奇偶性。
3.了解分段函数和反函数的概念。
4.掌握函数的四则运算与复合运算。
5.理解和掌握基本初等函数的性质及其图形,了解初等函数的概念。
(二)极限
1.理解极限的概念,能根据极限概念描述函数的变化趋势。理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系,趋于无穷大()时函数的极限。
2.了解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。理解极限存在的两个收敛准则(夹逼准则与单调有界准则),熟练掌握利用两个重要极限求函数的极限。.了解数列极限和函数极限的性质。了解数列极限和函数极限存在的 两个收敛准则(夹逼准则与单调有界准则)。熟练掌握数列极限和函数极限 的四则运算法则。
3.熟练掌握两个重要极限
并会用它们求函数的 极限。
4.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会用等价无穷小量求极限。
(三)连续
1.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
2.掌握连续函数的性质。掌握连续函数的四则运算和复合运算。理解初等函数在其定义区间 内的连续性,并会利用连续性求极限。
3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理),并会应用这些性质解决相关问题。
4.理解初等函数在其定义区间上连续,并会利用连续性求极限。
二、一元函数微分学
(一)导数与微分
1.理解导数和微分的概念,了解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,理解函数的可导性与连续性之间的关系。
2.熟练掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
3.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
4.理解高阶导数的概念,会求简单函数的阶导数。
5.掌握微分运算法则,会求函数的一阶微分。
(二)中值定理及导数的应用
1.理解罗尔中值定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理解决相关的问题。
2.熟练掌握洛必达法则,会用洛必达法则求
型未定式的极限。
3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,会利用函数的单调性证明一些简单的不等式,掌握函数最大值和最小值的求法及其应用。
4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平渐近线与垂直渐近线。
三、一元函数积分学
(一)不定积分
1.理解原函数与不定积分概念,了解原函数存在定理,掌握不定积分的性质。
2.熟练掌握不定积分的基本公式。
3.掌握不定积分的第一、第二换元法和分部积分法。
4.了解一些简单有理函数的不定积分的求法。
(二)定积分
1.理解定积分的概念与几何意义,了解可积的条件。
2.掌握定积分的基本性质。
3.理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式。
4.掌握定积分的换元积分法与分部积分法。
5.掌握用定积分表达和计算一些几何量(平面图形的面积、旋转体的体积、平行截面面积为已知的立体体积)。
四、向量代数与空间解析几何
(一)向量代数
1.理解空间直角坐标系,理解向量的概念及其表示,会求单位向量、方向余弦、向量在坐标轴上的投影。
2.掌握向量的线性运算、向量的数量积与向量积的计算方法。
3.掌握二向量平行、垂直的条件。
(二)平面与直线
1.会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。
2.会求点到平面的距离。
3.了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线的位置关系(平行、垂直)。
4.会判定直线与平面的位置关系(垂直、平行、直线在平面上)。
五、多元函数微积分
(一)多元函数微分学
1.了解二元函数的概念、几何意义及二元函数的极限与连续概念,会求二元函数的定义域。
2.理解二元函数偏导数和全微分概念,会求二元函数的全微分,了解全微分存在的必要条件与充分条件。3.掌握二元函数的一、二阶偏导数计算方法。会求二元函数的 全微分。
3.掌握复合函数一阶偏导数的求法。
4..掌握由方程
所确定的隐函数
的一阶偏导数的计算方法。5.掌握由方程所确定的隐函数的一阶偏导数的计算方法。
5.会求二元函数的无条件极值。
(二)二重积分
1.理解二重积分的概念、性质及其几何意义。
2.掌握二重积分在直角坐标系及极坐标系下的计算方法。
六、无穷级数
(一)数项级数
1.理解常数项级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。
2.掌握正项级数收敛性的比较判别法和比值判别法。
3.掌握几何级数、调和级数与级数的敛散性。
4.掌握交错级数的莱布尼茨判别法
5.了解任意项级数绝对收敛与条件收敛的概念。
(二)幂级数
1.了解幂级数的概念,会求幂级数的收敛半径、收敛区间和收敛域。
2.了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
3.会利用逐项求导和逐项积分求幂级数的和函数。
4.会利用逐项求导和逐项积分求幂级数的和函数。
5.熟记
的麦克劳林级数,会将一些简单的初等函数展开为的幂级数。
七、常微分方程
(一)一阶微分方程
1.理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
2.掌握可分离变量方程的解法。
3.掌握一阶线性方程的解法。
(二)二阶线性微分方程
1.了解二阶线性微分方程解的结构。
2.掌握二阶常系数齐次线性微分方程的解法。
Ⅱ.考试形式与题型
一、考试形式
考试采用闭卷、笔试形式。试卷满分100分,考试时间120分钟。
二、题型
考试题型从以下类型中选择:选择题、填空题、判断题、计算题、解答题、证明题、应用题。
山东省2020年普通高等教育专科升本科招生考试
高等数学II考试要求
Ⅰ.考试内容与要求
本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。主要考查学生识记、理解和应用能力,为进一步学习奠定基础。具体内容与要求如下:
一、函数、极限与连续
(一)函数
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.了解分段函数和反函数的概念,理解复合函数的概念。
4.掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图形,了解初等函数的概念。
6.了解经济学中的几种常见函数(成本函数、收益函数、利润函数、需求函数和供给函数)。
(二)极限
1.了解数列极限和函数极限(包括左极限与右极限)的概念。理解函数 极限存在与左极限、右极限存在之间的关系。
2.了解极限的性质与极限存在的两个准则(夹逼准则与单调有界准则),掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。数列极限和函数极限的性质。了解数列极限和函数极限存在的 两个收敛准则(夹逼准则与单调有界准则)。熟练掌握数列极限和函数极限 的四则运算法则。
3.熟练掌握两个重要极限
并会用它们求函数的极限。
4.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。了解无穷大量的概念及其与无穷小量的关系,会运用等价无穷小量替换求极限。
(三)连续
1.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。掌握函数连续与 左连续、右连续之间的关系。会求函数的间断点并判断其类型。
2.掌握连续函数的性质。连续函数的四则运算和复合运算。理解初等函数在其定义区间 内的连续性,并会利用连续性求极限。
3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)。
4.理解初等函数在其定义区间上连续,并会利用连续性求极限。
二、一元函数微分学
(一)导数与微分
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程。
2.熟练掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。
3.掌握隐函数的求导法、对数求导法。
4.了解高阶导数的概念,会求简单函数的阶导数。
5.了解函数微分的概念,了解微分与导数的关系,会求函数的一阶微分。
(二)中值定理及导数的应用
1.理解罗尔中值定理、拉格朗日中值定理,了解柯西中值定理和泰勒定理。会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明简单的不等式。
2.熟练掌握洛必达法则,会用洛必达法则求
型未定式的极限。
3.掌握函数单调性的判别方法,理解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
4.会用导数判断函数图形的凹凸性,会求函数图形的拐点、水平渐近线和垂直渐近线。
5.了解边际函数、弹性函数的概念及其实际意义,会求简单的应用问题。
三、一元函数积分学
(一)不定积分
1.理解原函数与不定积分的概念,了解原函数存在定理,掌握不定积分的性质。
2.熟练掌握不定积分的基本公式。
3.掌握不定积分的第一、第二换元法和分部积分法。
(二)定积分
1.理解定积分的概念与几何意义,了解可积的条件。
2.掌握定积分的基本性质。
3.理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式。
4.掌握定积分的换元积分法与分部积分法。
5.会利用定积分计算平面图形的面积
6.会利用定积分求解简单的应用问题。
四、多元函数微积分
(一)多元函数微分学
1.了解二元函数的概念、几何意义及二元函数的极限与连续概念。
2.了解偏导数、全微分概念,会求二元函数的一、二阶偏导数。会求二元函数的全微分。
3.掌握复合函数一阶偏导数的求法。
4.会求二元函数的全微分。
4.掌握由方程所确定的隐函数的一阶偏导数的计算方法。
5.会求二元函数的无条件极值。
(二)二重积分
1.理解二重积分的概念、性质及其几何意义。
2.掌握二重积分在直角坐标系下的计算方法。
五、常微分方程
(一)了解常微分方程的定义,了解常微分方程的阶、解、通解、初始条件和特解。
(二)掌握可分离变量微分方程
(三)掌握一阶线性微分方程的解法。
(三)会用常微分方程求解简单的应用问题。
Ⅱ.考试形式与题型
一、考试形式
考试采用闭卷、笔试形式。试卷满分100分,考试时间120分钟。
二、题型
考试题型从以下类型中选择:选择题、填空题、判断题、计算题、解答题、证明题、应用题。
山东省2020年普通高等教育专科升本科招生考试
高等数学Ⅲ考试要求
Ⅰ.考核内容与要求
本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。主要考查学生识记、理解和应用能力,为进一步学习奠定基础。具体内容与要求如下:
一、函数、极限与连续
(一)函数
1.理解函数的概念,掌握函数的表示法,会求函数的定义域,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.了解分段函数和反函数的概念,理解复合函数的概念。
4.掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图形,了解初等函数的概念。
(二)极限
1.理解数列极限和函数极限(包括左极限与右极限)的概念。理解数列极限和函数极限(包括左极限与右极限)的关系。
2.了解极限的性质与极限存在的两个准则(夹逼准则与单调有界准则),掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
3.熟练掌握两个重要极限
并会用它们求函数的 极限。
4.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。了解无穷大量的概念及其与无穷小量的关系。
(三)连续
1.理解函数连续性的概念(含左连续与右连续),会判断函数间断点的类型。
2.掌握连续函数的性质。掌握连续函数的四则运算和复合运算。理解初等函数在其定义区间 内的连续性,并会利用连续性求极限。
3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)。
4.理解初等函数在其定义区间上连续,并会利用连续性求极限。
二、一元函数微分学
(一)导数与微分
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程。
2.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
3.掌握隐函数的求导法、对数求导法,会求分段函数的导数。
4.了解高阶导数的概念,会求简单函数的二阶导数。
5.了解函数微分的概念,了解微分与导数的关系,会求函数的一阶微分。
(二)中值定理及导数的应用
1.理解罗尔定理、拉格朗日中值定理,掌握这两个定理的简单应用。
2.掌握洛必达法则,会用洛必达法则求
型未定式的极限。
3.掌握函数单调性的判别方法,理解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
三、一元函数积分学
(一)不定积分
1.理解原函数与不定积分的概念,了解原函数存在定理,掌握不定积分性质。
2.熟练掌握不定积分的基本公式。
3.掌握不定积分的第一、第二换元法和分部积分法。
(二)定积分
1.理解定积分的概念与几何意义,了解可积的条件。
2.掌握定积分的基本性质。
3.理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式。
4.掌握定积分的换元积分法与分部积分法。
5.会利用定积分计算平面图形的面积。
Ⅱ.考试形式与题型
一、考试形式
考试采用闭卷、笔试形式。试卷满分100分,考试时间120分钟。
二、题型
考试题型从以下类型中选择:选择题、填空题、判断题、计算题、证明题解答题、应用题。
